Why has the Higgs been the subject of so much hype, funding, and (mis)information? For two reasons. One, it was the last hold-out particle remaining hidden during the quest to check the accuracy of the Standard Model of Physics. This meant its discovery would validate more than a generation of scientific publication. Two, the Higgs is the particle which gives other particles their mass, making it both centrally important and seemingly magical. We tend to think of mass as an intrinsic property of all things, yet physicists believe that without the Higgs boson, mass fundamentally doesn’t exist.
So what's the Higgs boson, and why are people spending billions of dollars to find that god-danged subatomic particle?
First, a little context: The Higgs particle, and its associated field, were hypothesized back in the 1960s by British physicist Peter Higgs and others to fill a weird gap in the Standard Model, one of physics' most successful theories. The model as it stood had no mechanism to explain why some particles are massless (such as the photon, which is the quantum bit for light and other types of electromagnetic radiation), while other particles have varying degrees of mass (such as the W and Z bosons, which play a part in the weak nuclear force). By rights, all particles should be without mass and zipping around freely.
The Higgs mechanism sets up a field that interacts with particles to endow them with mass, and the Higgs boson is the particle associated with that field — just as photons are associated with an electromagnetic field. For more than four decades, physicists have assumed that the Higgs field existed, but found no experimental evidence for it. It requires a super-powerful particle smasher such as the Large Hadron Collider to produce energies high enough to knock a Higgs boson into existence under controlled conditions.
But the heavy particles created in a collider exist for just an instant before they decay into lighter particles. The LHC's physicists have been looking for particular patterns in the spray of particles that match what they'd expect to see from the decay of the Higgs boson. They've collected data for roughly a quadrillion proton-on-proton collisions, and on Wednesday they'll announce the status of the Higgs search based on those conclusions.
No comments:
Post a Comment