December 07, 2020

Entanglement

Che cos'è l'Entanglement? 

Even more surprising than superposition, quantum theory predicts that entities may have correlated fates. That is, the result of a measurement on one photon or atom leads instantaneously to a correlated result when an entangled photon or atom is measured.

For a more intuitive grasp of what we mean by “correlated results,” imagine that two coins could be entangled (there is no known way of doing this with coins, of course). Imagine one is tossing a coin. Careful records show it comes up “heads” about half the time and “tails” half the time, but any one result is unpredictable. Tossing another coin has similar, random results, but surprisingly, the records of the coin tosses show a correlation! When one coin comes up heads, the other coin comes up tails and vice versa. We say that the state of the two coins is entangled. Before the measurement (the toss), the outcome is unknown, but we know the outcomes will be correlated. As soon as either coin is tossed (measured), the fate of tossing the other coin is sealed. We cannot predict in advance what an individual coin will do, but their results will be correlated: once one is tossed, there is no uncertainty about the other.

This imaginary coin tossing is only to give the reader a sense of entanglement. Although one might come up with a classical explanation for these results, multitudes of ingenious experiments have confirmed the existence of entanglement and ruled out any possible classical explanation. Over several decades, physicists have continually refined these experiments to remove loopholes in measurement accuracy or subtle assumptions. All have confirmed the predictions of quantum mechanics.

With actual particles any measurement collapses uncertainty in the state. A real experiment would manufacture entangled particles, say by bringing particles together and entangling them or by creating them with entangled properties. For instance, we can “downconvert” one higher energy photon into two lower energy photons which leave in directions not entirely predictable. Careful experiments show that the directions are actually a superposition, not merely a random, unknown direction. However, since the momentum of the higher energy photon is conserved, the directions of the two lower energy photons are entangled. Measuring one causes both photons to collapse into one of the measurement bases. However, once entangled, the photons can be separated by any distance, at any two points in the universe; yet measuring one will result in a perfectly correlated measurement for the other.

Even though measurement brings about a synchronous collapse regardless of the separation, entanglement doesn’t let us transmit information. We cannot force the result of a measurement any more than we can force the outcome of tossing a fair coin (without interference).

 

Source:www.sciencedirect.com

 

No comments: